Artifact Content
Not logged in

Artifact dd73278037ccefcb04f9c61c7fb8c613c94573d7:


Copyright 1996, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.


Changes between MP version 4.1.1 and 4.1.2

* Bug fixes.

Changes between MP version 4.1 and 4.1.1

* Bug fixes.
* New systems supported: NetBSD and OpenBSD sparc64.

Changes between MP version 4.0.1 and 4.1

* Bug fixes.
* Speed improvements.
* Upwardly binary compatible with 4.0, 4.0.1, and 3.x versions.
* Asymptotically fast conversion to/from strings (mpz, mpq, mpn levels), but
  also major speed improvements for tiny operands.
* mpn_get_str parameter restrictions relaxed.
* Major speed improvments for HPPA 2.0 systems.
* Major speed improvments for UltraSPARC systems.
* Major speed improvments for IA-64 systems (but still sub-optimal code).
* Extended test suite.
* mpfr is back, with many bug fixes and portability improvements.
* New function: mpz_ui_sub.
* New functions: mpz_export, mpz_import.
* Optimization for nth root functions (mpz_root, mpz_perfect_power_p).
* Optimization for extended gcd (mpz_gcdext, mpz_invert, mpn_gcdext).
* Generalized low-level number format, reserving a `nails' part of each
  limb.  (Please note that this is really experimental; some functions
  are likely to compute garbage when nails are enabled.)
* Nails-enabled Alpha 21264 assembly code, allowing up to 75% better
  performance.  (Use --enable-nails=4 to enable it.)

Changes between MP version 4.0 and 4.0.1

* Bug fixes.

Changes between MP version 3.1.1 and 4.0

* Bug fixes.
* Speed improvements.
* Upwardly binary compatible with 3.x versions.
* New CPU support: IA-64, Pentium 4.
* Improved CPU support: 21264, Cray vector systems.
* Support for all MIPS ABIs: o32, n32, 64.
* New systems supported: Darwin, SCO, Windows DLLs.
* New divide-and-conquer square root algorithm.
* New algorithms chapter in the manual.
* New malloc reentrant temporary memory method.
* New C++ class interface by Gerardo Ballabio (beta).
* Revamped configure, featuring ABI selection.
* Speed improvements for mpz_powm and mpz_powm_ui (mainly affecting small
  operands).
* mpz_perfect_power_p now properly recognizes 0, 1, and negative perfect
  powers.
* mpz_hamdist now supports negative operands.
* mpz_jacobi now accepts non-positive denominators.
* mpz_powm now supports negative exponents.
* mpn_mul_1 operand overlap requirements relaxed.
* Float input and output uses locale specific decimal point where available.
* New gmp_printf, gmp_scanf and related functions.
* New division functions: mpz_cdiv_q_2exp, mpz_cdiv_r_2exp, mpz_divexact_ui.
* New divisibility tests: mpz_divisible_p, mpz_divisible_ui_p,
  mpz_divisible_2exp_p, mpz_congruent_p, mpz_congruent_ui_p,
  mpz_congruent_2exp_p.
* New Fibonacci function: mpz_fib2_ui.
* New Lucas number functions: mpz_lucnum_ui, mpz_lucnum2_ui.
* Other new integer functions: mpz_cmp_d, mpz_cmpabs_d, mpz_get_d_2exp,
  mpz_init2, mpz_kronecker, mpz_lcm_ui, mpz_realloc2.
* New rational I/O: mpq_get_str, mpq_inp_str, mpq_out_str, mpq_set_str.
* Other new rational functions: mpq_abs, mpq_cmp_si, mpq_div_2exp,
  mpq_mul_2exp, mpq_set_f.
* New float tests: mpf_integer_p, mpf_fits_sint_p, mpf_fits_slong_p,
  mpf_fits_sshort_p, mpf_fits_uint_p, mpf_fits_ulong_p, mpf_fits_ushort_p.
* Other new float functions: mpf_cmp_d, mpf_get_default_prec, mpf_get_si,
  mpf_get_ui, mpf_get_d_2exp.
* New random functions: gmp_randinit_default, gmp_randinit_lc_2exp_size.
* New demo expression string parser (see demos/expr).
* New preliminary perl interface (see demos/perl).
* Tuned algorithm thresholds for many more CPUs.

Changes between MP version 3.1 and 3.1.1

* Bug fixes for division (rare), mpf_get_str, FFT, and miscellaneous minor
  things.

Changes between MP version 3.0 and 3.1

* Bug fixes.
* Improved `make check' running more tests.
* Tuned algorithm cutoff points for many machines.  This will improve speed for
  a lot of operations, in some cases by a large amount.
* Major speed improvments: Alpha 21264.
* Some speed improvments: Cray vector computers, AMD K6 and Athlon, Intel P5
  and Pentium Pro/II/III.
* The mpf_get_prec function now works as it did in GMP 2.
* New utilities for auto-tuning and speed measuring.
* Multiplication now optionally uses FFT for very large operands.  (To enable
  it, pass --enable-fft to configure.)
* Support for new systems: Solaris running on x86, FreeBSD 5, HP-UX 11, Cray
  vector computers, Rhapsody, Nextstep/Openstep, MacOS.
* Support for shared libraries on 32-bit HPPA.
* New integer functions: mpz_mul_si, mpz_odd_p, mpz_even_p.
* New Kronecker symbol functions: mpz_kronecker_si, mpz_kronecker_ui,
  mpz_si_kronecker, mpz_ui_kronecker.
* New rational functions: mpq_out_str, mpq_swap.
* New float functions: mpf_swap.
* New mpn functions: mpn_divexact_by3c, mpn_tdiv_qr.
* New EXPERIMENTAL function layer for accurate floating-point arithmetic, mpfr.
  To try it, pass --enable-mpfr to configure.  See the mpfr subdirectory for
  more information; it is not documented in the main GMP manual.

Changes between MP version 3.0 and 3.0.1

* Memory leaks in gmp_randinit and mpz_probab_prime_p fixed.
* Documentation for gmp_randinit fixed.  Misc documentation errors fixed.

Changes between MP version 2.0 and 3.0

* Source level compatibility with past releases (except mpn_gcd).
* Bug fixes.
* Much improved speed thanks to both host independent and host dependent
  optimizations.
* Switch to autoconf/automake/libtool.
* Support for building libgmp as a shared library.
* Multiplication and squaring using 3-way Toom-Cook.
* Division using the Burnikel-Ziegler method.
* New functions computing binomial coefficients: mpz_bin_ui, mpz_bin_uiui.
* New function computing Fibonacci numbers: mpz_fib_ui.
* New random number generators: mpf_urandomb, mpz_rrandomb, mpz_urandomb,
  mpz_urandomm, gmp_randclear, gmp_randinit, gmp_randinit_lc_2exp, gmp_randseed, 
  gmp_randseed_ui.
* New function for quickly extracting limbs: mpz_getlimbn.
* New functions performing integer size tests: mpz_fits_sint_p,
  mpz_fits_slong_p, mpz_fits_sshort_p, mpz_fits_uint_p, mpz_fits_ulong_p,
  mpz_fits_ushort_p.
* New mpf functions: mpf_ceil, mpf_floor, mpf_pow_ui, mpf_trunc.
* New mpq function: mpq_set_d.
* New mpz functions: mpz_addmul_ui, mpz_cmpabs, mpz_cmpabs_ui, mpz_lcm,
  mpz_nextprime, mpz_perfect_power_p, mpz_remove, mpz_root, mpz_swap,
  mpz_tdiv_ui, mpz_tstbit, mpz_xor.
* New mpn function: mpn_divexact_by3.
* New CPU support: DEC Alpha 21264, AMD K6 and Athlon, HPPA 2.0 and 64,
  Intel Pentium Pro and Pentium-II/III, Sparc 64, PowerPC 64.
* Almost 10 times faster mpz_invert and mpn_gcdext.
* The interface of mpn_gcd has changed.
* Better support for MIPS R4x000 and R5000 under Irix 6.
* Improved support for SPARCv8 and SPARCv9 processors.

Changes between MP version 2.0 and 2.0.2

* Many bug fixes.

Changes between MP version 1.3.2 and 2.0

* Division routines in the mpz class have changed.  There are three classes of
  functions, that rounds the quotient to -infinity, 0, and +infinity,
  respectively.  The first class of functions have names that begin with
  mpz_fdiv (f is short for floor), the second class' names begin with mpz_tdiv
  (t is short for trunc), and the third class' names begin with mpz_cdiv (c is
  short for ceil).

  The old division routines beginning with mpz_m are similar to the new
  mpz_fdiv, with the exception that some of the new functions return useful
  values.

  The old function names can still be used.  All the old functions names will
  now do floor division, not trunc division as some of them used to.  This was
  changed to make the functions more compatible with common mathematical
  practice.

  The mpz_mod and mpz_mod_ui functions now compute the mathematical mod
  function.  I.e., the sign of the 2nd argument is ignored.

* The mpq assignment functions do not canonicalize their results.  A new
  function, mpq_canonicalize must be called by the user if the result is not
  known to be canonical.
* The mpn functions are now documented.  These functions are intended for
  very time critical applications, or applications that need full control over
  memory allocation.  Note that the mpn interface is irregular and hard to
  use.
* New functions for arbitrary precision floating point arithmetic.  Names
  begin with `mpf_'.  Associated type mpf_t.
* New and improved mpz functions, including much faster GCD, fast exact
  division (mpz_divexact), bit scan (mpz_scan0 and mpz_scan1), and number
  theoretical functions like Jacobi (mpz_jacobi) and multiplicative inverse
  (mpz_invert).
* New variable types (mpz_t and mpq_t) are available that makes syntax of
  mpz and mpq calls nicer (no need for & before variables).  The MP_INT and
  MP_RAT types are still available for compatibility.
* Uses GNU configure.  This makes it possible to choose target architecture
  and CPU variant, and to compile into a separate object directory.
* Carefully optimized assembly for important inner loops.  Support for DEC
  Alpha, Amd 29000, HPPA 1.0 and 1.1, Intel Pentium and generic x86, Intel
  i960, Motorola MC68000, MC68020, MC88100, and MC88110, Motorola/IBM
  PowerPC, National NS32000, IBM POWER, MIPS R3000, R4000, SPARCv7,
  SuperSPARC, generic SPARCv8, and DEC VAX.  Some support also for ARM,
  Clipper, IBM ROMP (RT), and Pyramid AP/XP.
* Faster.  Thanks to the assembler code, new algorithms, and general tuning.
  In particular, the speed on machines without GCC is improved.
* Support for machines without alloca.
* Now under the LGPL.

INCOMPATIBILITIES BETWEEN GMP 1 AND GMP 2

* mpq assignment functions do not canonicalize their results.
* mpz division functions round differently.
* mpz mod functions now really compute mod.
* mpz_powm and mpz_powm_ui now really use mod for reduction.



----------------
Local variables:
mode: text
fill-column: 76
End: